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Abstract

The so-called ‘‘FSI four-equation model’’ describes the axial vibration of liquid-filled pipes. Two equations for the

liquid are coupled to two equations for the pipe, through terms proportional to the Poisson contraction ratio, and

through mutual boundary conditions. In 1955 and 1956, Skalak defined this basic model, which disregards friction and

damping effects.

The four equations can be solved with the method of characteristics (MOC). The standard approach is to cover the

distance–time plane with equidistantly spaced grid-points and to time-march from a given initial state. This approach

introduces error, because either numerical interpolations or wave speed adjustments are necessary.

This paper presents a method of exact calculation in terms of a simple recursion. The method is valid for transient

events only, because the calculation time grows exponentially with the duration of the event. The calculation time is

proportional to the temporal and spatial resolution. The exact solutions are used to investigate the error due to

numerical interpolations and wave speed adjustments, with emphasis on the latter.

r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. FSI four-equation model

Classical waterhammer (fluid) and beam (structure) theories adequately describe the low-frequency vibration of

liquid-filled pipe systems. The liquid is added mass in the lateral pipe vibration and it is neglected in the torsional pipe

vibration. The role of the liquid in the axial pipe vibration has always been a point of discussion. Is it just (frequency-

dependent) added mass (and stiffness)? Has its full elastic behaviour to be considered? And what fluid–structure

interaction (FSI) mechanisms have to be taken into account? To answer these questions, the so-called ‘‘FSI four-

equation model’’ has to be solved. The model describes the coupled axial vibration of liquid and pipe, where the

coupling is through terms in the equations and through boundary conditions.

The four equations, governing fluid pressure, P; fluid velocity, V ; axial pipe stress, sz; and axial pipe velocity, ’uz; are
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Nomenclature

Scalars

A cross-sectional area (m2)

c classical wave speed (m/s)

cd damping coefficient (kg/s)

det determinant

E Young’s modulus of pipe wall material (Pa)

e pipe wall thickness (m)

FSI fluid–structure interaction

K fluid bulk modulus (Pa)

L pipe length (m)

MOC method of characteristics

P fluid pressure (Pa)

R inner radius of pipe (m)

Tc valve closure time (s)

t time (s)

’uz axial pipe velocity (m/s)

V fluid velocity (m/s)

Vr relative fluid velocity, V � ’uz (m/s)

z axial coordinate (m)

g constant (m/s), see Eq. (25)

D numerical step size; change in magnitude

l eigenvalue, wave speed (m/s)

n Poisson ratio

x loss coefficient

r mass density (kg/m3)

sz axial pipe stress (Pa)

t valve closure function, see Eq. (34)

Matrices and vectors

A coefficients, see Eqs. (5) and (21)

B coefficients, see Eqs. (5) and (22)

C coefficients, see Eq. (5)

D boundary condition coefficients, see Eqs. (19) and (30)

O zero matrix

q excitation vector, see Eqs. (19)

R matrix, see Eq. (18)

S transformation matrix, see Eqs. (12) and (27)

T transformation matrix, see Eq. (27)

g Riemann invariants, see Eq. (6)

K diagonal matrix of eigenvalues, see Eq. (10)

n eigenvector, see Eq. (12)

/ dependent variables, see Eqs. (5) and (20)

Subscripts

b boundary

f fluid, flow

L boundary position z ¼ L

r relative

s structure, solid

z axial direction

0 boundary position z ¼ 0; initial state t ¼ 0
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The model is valid for the low-frequency acoustic behaviour of straight, thin-walled, linearly elastic, liquid-filled,

prismatic pipes of circular cross-section.

Skalak (1955/1956a, b) derived the FSI four-equation model as an extension of Joukowsky’s method and as the low-

frequency limit of two-dimensional fluid and shell representations. He showed that the model permits solutions that are

waves of arbitrary shape travelling without dispersion at the phase velocity of either the liquid (l1) or the pipe (l3), but
he made no attempt to solve the four equations in general. The validity of the FSI four-equation model has been

demonstrated by many researchers, but most prominently by Vardy and Fan (1989). For more information on the

subject the reader is referred to review papers by Tijsseling (1996), and Wiggert and Tijsseling (2001).

1.2. Conventional approach

The method of characteristics (MOC) is the preferred method to solve the FSI four-equation model, because the wave

speeds are constant (no dispersion) and, unlike finite difference (Schwarz, 1978) and finite element (Zhang et al., 1994)

methods, steep wave fronts can be properly dealt with. The distance–time plane is covered with either a rectangular

(collocated) or a diamond (staggered) computational grid. To avoid interpolations and have Courant numbers equal to

one, Schwarz (1978), Wiggert et al. (1985, 1987), B .urmann et al. (1987), B .urmann and Thielen (1988a, b) and others

assumed wave speed ratios (l3=l1) that are whole numbers (integers). This strong assumption was relieved by Tijsseling
(1993), Tijsseling et al. (1996), and Bergant and Tijsseling (2001) by allowing the wave speed ratios (l3=l1) to be rational
numbers at the expense of refined computational grids. Fan (1989), Elansary and Contractor (1990), Bouabdallah and

Massouh (1997) and others used interpolations on fine grids.

The conventional MOC approaches introduce phase error if wave speeds are adjusted, and numerical dispersion and

damping if interpolations are employed. Both types of error accumulate when marching in time. Furthermore, for all

approaches, interpolations are necessary when numerical data is required in between grid points, for example at the

location of measuring devices.

1.3. New approach

The new approach presented in this paper has no interpolations, no adjustments (of wave speeds) and no

approximations. It is valid for linear, non-dispersive, non-dissipative, hyperbolic systems with linear (or quadratic)

time-dependent boundary conditions. It gives exact solutions without the errors of the conventional approaches.

The only previous exact solutions of the FSI four-equation model known to the author are due to B .urmann (1975),

Williams (1977), and Wilkinson and Curtis (1980). B .urmann (1975) used the MOC to find all possible transmission and

reflection coefficients in coaxial pipe systems. Williams (1977) applied jump conditions to calculate the initial effect of

precursor waves (pressure changes caused by axial-stress waves) on waterhammer. Wilkinson and Curtis (1980), in an

excellent paper, utilised jump conditions and reflection coefficients to calculate and explain the events in their

laboratory experiment (Fig. 1). The applicability of jump conditions and reflection/transmission coefficients is limited,

because all wave fronts have to be tracked to find exact solutions. Citing Williams (1977, p. 242): ‘‘each wave, be it

precursor or waterhammer, in general gives rise to two reflected waves, one of each type: the resulting exponential

growth in the number of separate waves in the pipe causes obvious analytical difficulties’’. Wilkinson and Curtis (1980,

p. 240) simulated a time period of 5L=ð2l1Þ in which 50 wave fronts existed. Tracking of these wave fronts and their

strengths was done by hand (and not without error). Edwards and Please (1988) proposed a discrete analogue of the

MOC, which was less laborious than the method of Wilkinson and Curtis, but they had to apply some averaging

(interpolation) at the boundaries.

The present method automatically tracks wave fronts backward in time by means of a simple recursion. The exact

solutions thus obtained can be used: to check numerical results and schemes, to confirm the accuracy of previous

results, to serve as reference solutions in benchmark problems, and to perform parameter variation studies without

parameter changes generated by the numerical method itself (e.g., changed wave speeds). The method does not require a

conventional computational grid. It is general and can be applied to analogous four-equation systems encountered in,

for example, the theory of linear(ized) waves in two-phase flows, two-layer density currents, and liquid-saturated
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porous media. The method works also for higher-order systems like those developed by B .urmann (1975). In higher-

order systems the necessary eigenvalues and eigenvectors cannot generally be found in closed form.

2. Theory

The analytical development follows (Zhang et al., 1999, Appendix A).

2.1. General equations

The general equations

A
q
qt

/ðz; tÞ þ B
q
qz

/ðz; tÞ þ C/ðz; tÞ ¼ 0 ð5Þ

describe linear wave propagation in one spatial dimension. The constant matrices A and B are invertible and A�1B is

diagonalizable. The constant matrix C, which may be singular, causes frequency dispersion (if CaO). The N dependent

and coupled variables fi; constituting the state vector /; are functions of the independent variables z (space) and t

(time). Herein N ¼ 4 and C ¼ O:

2.2. Method of characteristics

The MOC introduces a new set of dependent variables through

gðz; tÞ ¼ S�1/ðz; tÞ or /ðz; tÞ ¼ Sgðz; tÞ; ð6Þ

so that each Zi is a linear combination of the original variables fi: Substitution of Eq. (6) into Eq. (5), with C ¼ O; gives

AS
q
qt

Zðz; tÞ þ BS
q
qz

gðz; tÞ ¼ 0: ð7Þ
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Fig. 1. Waterhammer rig of Wilkinson and Curtis (1980).
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Multiplication by S�1A�1 yields

q
qt

gðz; tÞ þ K
q
qz

gðz; tÞ ¼ 0; ð8Þ

in which

K ¼ S�1A�1BS: ð9Þ

A set of decoupled equations is obtained when K is diagonal:

K ¼

l1 0 0 0

0 l2 0 0

0 0 l3 0

0 0 0 l4

0
BBB@

1
CCCA: ð10Þ

Substitution of Eq. (10) into Eq. (9) and solving for S reveals that a non-trivial solution exists only when the diagonal

elements of K are eigenvalues satisfying the characteristic equation

det B� lAð Þ ¼ 0; ð11Þ

in which case S consists of the eigenvectors ni of A
�1B belonging to li :

S ¼ n1 n2 n3 n4
	 


: ð12Þ

The decoupled Eq. (8),

qZiðz; tÞ
qt

þ li
qZiðz; tÞ

qz
¼ 0; i ¼ 1; 2; 3; 4 ð13Þ

transforms to

dZiðz; tÞ
dt

¼ 0; i ¼ 1; 2; 3; 4 ð14Þ

when they are considered along characteristic lines in the z � t plane defined by

dz

dt
¼ li; i ¼ 1; 2; 3; 4: ð15Þ

The solution of the ordinary differential Eqs. (14) and (15) is

Ziðz; tÞ ¼ Ziðz � liDt; t � DtÞ; i ¼ 1; 2; 3; 4; ð16Þ
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Fig. 2. Interior point P and ‘‘feeding’’ characteristic lines in the distance–time plane.
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when a numerical time step Dt is used, or, more general and with reference to Fig. 2,

ZiðPÞ ¼ ZiðAiÞ; i ¼ 1; 2; 3; 4 or gðPÞ ¼

Z1ðA1Þ

Z2ðA2Þ

Z3ðA3Þ

Z4ðA4Þ

0
BBB@

1
CCCA: ð17Þ

The value of the unknown variable Zi does not change along the line AiP:
The original unknowns in / are obtained from g through Eq. (6). This gives

/ðPÞ ¼
X4
i¼1

SRiS
�1/ðAiÞ; ð18Þ

where the ith diagonal element of the matrix Ri is 1 and all other elements are 0.

2.3. Boundary conditions

At the boundaries, the relations (16) or (17) provide two equations (see Fig. 3). To find the four unknowns ZiðPÞ at
the boundary z ¼ zb (zb ¼ 0 or zb ¼ L), two additional equations are required. These are given by the linear boundary

conditions

Dzb
ðtÞ/ðzb; tÞ ¼ qzb

ðtÞ or Dzb
ðtÞSgðzb; tÞ ¼ qzb

ðtÞ; ð19Þ

where Dzb
is a 2 by 4 matrix of coefficients and the 2-vector qzb

is the (boundary) excitation. For convenience, the 4 by 4

matrix D combines the two matrices D0 and DL by alternately stacking the rows of D0 and DL; and the 4-vector q

combines the two vectors q0 and qL by alternately stacking the rows of q0 and qL: Section 2.5 gives an example.

2.4. Initial conditions

The initial condition at t ¼ 0 can be the steady state solution /ðz; 0Þ ¼ /0; where the constant state /0 is consistent

with the boundary conditions, or it can be any non-equilibrium state /ðz; 0Þ ¼ /0ðzÞ exciting the system (e.g., sudden
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Fig. 3. Boundary point P and ‘‘feeding’’ characteristic lines in the distance–time plane.
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release of pressure and/or stress). The once-only matrix inversion in gðz; 0Þ ¼ S�1/0ðzÞ can be done algebraically (using
Cramer’s rule). Matrix inversion is not needed for zero initial conditions.

2.5. FSI four-equation model

In terms of the general Eq. (5), the axial vibration of a liquid-filled pipe (Eqs. (1)–(4)) can be represented by the state

vector

/ ¼

V

P

’uz

sz

0
BBB@

1
CCCA ð20Þ

and the matrices of coefficients

A ¼

1 0 0 0

0 ðrf c2f Þ
�1 0 0

0 0 1 0

0 nRðEeÞ�1 0 �ðrsc
2
s Þ

�1

0
BBBB@

1
CCCCA; ð21Þ

B ¼

0 r�1f 0 0

1 0 �2n 0

0 0 0 �r�1s

0 0 1 0

0
BBBB@

1
CCCCA: ð22Þ

The constants

c2f ¼
rf

K
þ ð1� n2Þ

2rf R

Ee

� 
�1
and c2s ¼

E

rs

ð23Þ

are the squares of the classical pressure and axial-stress wave speeds.

The characteristic (dispersion) Eq. (11), corresponding to the matrices (21) and (22), is

l4 � g2l2 þ c2f c2s ¼ 0; ð24Þ

where

g2 ¼ 1þ 2n2
rf

rs

R

e

� �
c2f þ c2s : ð25Þ

This leads to (slightly) modified (because of FSI) squared wave speeds

l21;2 ¼
1

2
½g2 � ðg4 � 4c2f c2s Þ

1=2�; ð26aÞ

l23;4 ¼
1

2
½g2 þ ðg4 � 4c2f c2s Þ

1=2�; ð26bÞ

where l1 and l3 are positive, and l2 and l4 are negative.
The transformation matrix used (Eq. (12)) is S ¼ ðTAÞ�1 with T defined by

rowifTg ¼ 1; li; 2n
l2i

c2s � l2i
; 2n

c2sli

c2s � l2i

 !
i ¼ 1; 2;

rowifTg ¼ rf

n
E

R

e

c2f l
2
i

c2f � l2i
; rf

n
E

R

e

c2f l
3
i

c2f � l2i
;
l2i
c2s
; li

 !
i ¼ 3; 4: ð27Þ

It is noted that transformation matrices are not unique. For example, S ¼ ðTBÞ�1 is an equally valid transformation

matrix. The once-only matrix inversion of TA has been done numerically and, with the same result, algebraically (using

Cramer’s rule).

The boundary conditions are defined through coefficient matrices D and excitation vectors q (see Eq. (19)). For

example, a reservoir at z ¼ 0 and an unrestrained massless valve at z ¼ L; as in the Sections 4.1 and 4.2, give matrices
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D0 ¼
0 1 0 0

0 0 1 0

 !
and q0 ¼

0

0

 !
; ð28Þ

DL ¼
1 0 �1 0

0 Af 0 �As

 !
and qL ¼

0

0

 !
; ð29Þ

where A is a cross-sectional area. In the author’s previous work, e.g., Zhang et al. (1999), the above matrices and vectors

have been simply stacked to form one matrix D and one vector q: Herein, the boundary matrix D has rows with

alternating the boundary conditions at z ¼ 0 and z ¼ L: Hence Eqs. (28) and (29) are combined to give

D ¼

0 1 0 0

1 0 �1 0

0 0 1 0

0 Af 0 �As

0
BBB@

1
CCCA and q ¼

0

0

0

0

0
BBB@

1
CCCA: ð30Þ

By taking D43 ¼ �cd the system is damped by a dashpot connected to the valve.

2.6. Nonlinear non-instantaneous valve closure

In steady turbulent pipe flow the pressure loss, DP0; across a fully open valve is given by the orifice equation

DP0 ¼ x012rf ðV0 � ’uz0ÞjV0 � ’uz0j; ð31Þ

where x0 is an empirical loss coefficient (Wylie and Streeter, 1993, pp. 44–45). The same relation is assumed to hold for a

closing valve,

DP ¼ x1
2
rf ðV � ’uzÞjV � ’uzj; ð32Þ

where x depends on valve position and hence of time. Division of Eq. (32) by Eq. (31) gives the dimensionless valve

closure coefficient t ¼
ffiffiffiffiffiffiffiffiffiffi
x0=x

p
and the nonlinear boundary condition

P0ðV � ’uzÞjV � ’uzj ¼ t2ðtÞðV0 � ’uz0ÞjV0 � ’uz0jP; ð33Þ

in which the pressure downstream of the valve has been taken zero.

The specific function tðtÞ used herein is

tðtÞ ¼

ð1� t=TcÞ
3:53 for 0ptp0:4Tc

0:394ð1� t=TcÞ
1:70 for 0:4TcptpTc

0 for Tcpt

8><
>: ð34Þ

in which Tc is the valve closure time and x0 ¼ 0:2 (see Fig. 4). This function, which is based on empirically obtained

ball-valve discharge coefficients, see (Lavooij and Tijsseling, 1988, Vol. 1, Appendix A), was provided by Dr. David

Wiggert to Delft Hydraulics in 1987. More information on ball-valve discharge characteristics can be found in (Van Rij,

1970; Schedelberger, 1975).

The quadratic Eq. (33) is solved simultaneously with three linear equations (two Riemann invariants and one

boundary condition). This is done exactly in Appendix A, which is an update of (Lavooij and Tijsseling, 1988, Vol. 2,

Appendix E).

The resistance of the valve in steady state gives a small initial pressure, so that

/0 ¼

V0

P0

0

Af P0=As

0
BBB@

1
CCCA: ð35Þ

3. Algorithm

This section with its appendix is the heart of the paper. It describes an algorithm for finding the exact value of the

state vector / in any point ðz; tÞ in the distance–time plane. The algorithm is formulated in terms of the Riemann
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invariants Zi and it is based on a ‘‘coast-to-coast’’ approach, which is explained in words now. Fig. 3 is essential. The

vector g in point P on the left boundary at z ¼ 0 at time t consists of the four components Z1; Z2; Z3 and Z4: The
components Z2 and Z4 are assumed to be known because, according to Eq. (17), these are equal to Z2 and Z4 in

the points A2 and A4; respectively, on the right boundary at z ¼ L: The components Z1 and Z3 follow from the boundary

conditions (19); they depend on D0; S; q0; Z2 and Z4: Naturally, the same story holds for any point P on the right

boundary. For the calculation of g in point P on the left boundary, one needs information from the ‘‘earlier’’ points A2

and A4 on the right boundary; and for the calculation of g in the points A2 and A4 on the right boundary, one needs

information from ‘‘earlier’’ points (e.g., A1 and A3) on the left boundary. This whole process can nicely be captured in a

simple recursion that stops when characteristic lines intersect the t ¼ 0 line, at which g has a given initial value. The

recursion and the treatment of internal points are presented in Appendix B.

4. Results

Some important previous results are recalculated, but now exactly. The exact results give details as fine as the chosen

resolution in time and/or distance.

4.1. Wilkinson and Curtis

Wilkinson and Curtis (1980) performed laboratory experiments in a very thin-walled, vertical, steel pipe in which an

upward moving water column collided with an unrestrained closed end (Fig. 1). The recorded transient pressure clearly

exhibited the occurrence of a precursor wave. Wilkinson and Curtis showed that simplified theory without Poisson

coupling was not able to satisfactorily describe the experiment. The more exact FSI four-equation model gave good

agreement with the measurement, except for dispersion effects. Unfortunately, the exact solutions given by Wilkinson

and Curtis contain errors. For example, and with reference to their Table 2 and their Figs. 8 and 9, the pressure rise

caused by the arrival of the precursor wave at the lower transducer is predicted in their table of wave strengths, but not

included in the corresponding figure. On the other hand, the doubling of the pressure caused by the reflected precursor

wave was predicted well, so that the error is most likely due to the fact that the calculation and the drawing were done

by hand. Also, the calculated pressure at the lower transducer is wrong 12ms after impact. The automated calculation

introduced herein gives the results displayed in Fig. 5. The shown pressures at the two transducer positions reveal the

small mistakes by Wilkinson and Curtis and they confirm the later simulation by Tijsseling and Lavooij (1989). The

data used in the present simulation were: pipe length L ¼ 6:10m, R ¼ 12:486mm, e ¼ 0:276mm, E ¼ 175:4GPa,
rs ¼ 7900 kg/m3, n ¼ 0:28; K ¼ 2:141GPa, rf ¼ 997:5 kg/m3; the corresponding wave speeds (Eqs. (26)) and their ratio

are l1 ¼ 1008:9m/s, l3 ¼ 4816:7m/s and l3=l1 ¼ 4:774: The upper transducer was at z ¼ 0 herein, and the lower at

z ¼ 1:2m. The initial conditions were zero, except for V0 ¼ 5m/s.
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Fig. 4. Valve-closure function tðtÞ:
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4.2. Delft Hydraulics Benchmark Problem A

The Delft Hydraulics Benchmark Problems A to F have been defined and used to test numerical methods and FSI

software (Tijsseling and Lavooij, 1990; Lavooij and Tijsseling, 1991). Problem A (Fig. 6) concerns a reservoir-pipe-

valve system defined by: L ¼ 20m, R ¼ 398:5mm, e ¼ 8mm, E ¼ 210GPa, rs ¼ 7900 kg/m3, n ¼ 0:30; K ¼ 2:1GPa,
rf ¼ 1000 kg/m3, V0 ¼ 1m/s, so that the wave speeds (Eqs. (26)) and their ratio are l1 ¼ 1024:7m/s, l3 ¼ 5280:5m/s
and l3=l1 ¼ 5:153: The instantaneously closing valve may be structurally fixed, implying zero displacement (and

velocity), or free and closed, in which case V ¼ ’uz and Af P ¼ Assz at the valve. It is noted that the benchmark problems

are numerical test cases only; experimental data does not exist.

Fig. 7 shows the dissipative effect of interpolations. The wave speed ratio l3=l1 (5.153) is close to 5 in this case, so

that the interpolation error is relatively small: a ratio of 5.5 will give a stronger smearing of wave fronts. Dr. David Fan

(1989) provided the result obtained with (time–line) interpolations.

To avoid interpolations, the author has applied wave speed adjustment in all of his previous work through modified

mass densities rf and rs: Fig. 8 shows typical results. If the wave speed ratio is 5/1, 5 structural waves fit in 1 fluid wave.
This is nicely exhibited by the broken line, which depicts the pressure at the valve. If the wave speed ratio is 67/13, 67

structural waves fit in 13 fluid waves. This is the more exact solid line. If integer wave speed ratios are employed, the

solution cannot converge to the exact solution. If rational wave speed ratios are used, the solution converges when the

rational numbers are taken closer to the real number representing the exact wave speed ratio. It is noted that Liou

(1983) presented an original method to correct for the adjusted wave speeds. Unfortunately his method introduces some

numerical damping.

The algorithm (Mathcad, 2001, worksheet) producing the exact solutions has been verified against existing Fortran

code. For rational wave speed ratios l3=l1; the new algorithm and the old code give practically the same results: the

small relative differences of the order of 10�7 correspond to the stored precision (7 digits) of the Fortran results. The

time used by Mathcad to produce the results in Section 4.1 on a 2GHz PC was in the order of seconds, but for the

results in this Section 4.2 it was in the order of days. The computation time grows exponentially with time t: For
example, for 2ol3=l1o3; the number of BOUNDARY calls (see Appendix B) needed to calculate gðPÞ ¼ gðzb; tÞ is
found from a classical Fibonacci sequence.

The new algorithm gives exact waterhammer (without FSI, n ¼ 0) solutions for the Eqs. (1) and (2)—with sz either

constant or proportional to P—which is nothing special, except that the exact solutions are not necessarily in

equidistantly spaced grid points. The classical waterhammer solutions are used as a reference for the FSI solutions.

If the valve is structurally fixed, the only FSI mechanism is Poisson coupling. The exact pressure at the valve (solid

line) in Fig. 9 and the result obtained with a wave speed ratio adjusted to 67/13 are—on this plotting scale—visibly

identical, thus confirming the 67/13 result of Tijsseling (1997). The growing pressure amplitude is the result of a beat

phenomenon, which also appears in FSI computations of systems with fixed junctions (elbows, branches), see Tijsseling

and Heinsbroek (1999), and sometimes in waterhammer measurements (see Budny et al., 1991, Fig. 4a) and Vennatr^

(1999, Fig. 16). Fig. 10 displays the pressure at the midpoint (z ¼ L=2) obtained with subroutine INTERIOR (see

Appendix B).

If the valve is unrestrained, its axial vibration provides a strong mechanism for FSI (junction coupling). The exact

pressure at the valve (solid line) in Fig. 11 again confirms the result obtained with a rational wave speed ratio 67/13: one

needs to zoom in, as in Fig. 11(top), to see that the differences are small in timing and negligible in magnitude.
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Fig. 5. Exact solutions for the impact test of Wilkinson and Curtis (1980). See Fig. 1. Pressure at impact end (upper transducer, upper

line) and pressure 4.90m away from impact end (lower transducer, lower line).

A.S. Tijsseling / Journal of Fluids and Structures 18 (2003) 179–196188



Fig. 12(lower and top) display the corresponding pressures at the midpoint obtained with subroutine INTERIOR. Each

of the FSI graphs in Figs. 8–12 consists of 1374 points.

The results shown so far concern instantaneous valve closure, which is a worst case scenario for industrial systems.

The boundary conditions for the valve (Eqs. (29)) were constant, but in conflict with the initial conditions and thus
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Fig. 7. Effect of interpolations. Pressure at valve for Delft Hydraulics Benchmark Problem A. Solid line: without interpolations,

Dz ¼ L; Dt ¼ 0:29ms. Broken line: with interpolations, Dz ¼ L=8; Dt ¼ 0:47ms.

Fig. 8. Effect of wave speed adjustments. Pressure at valve for Delft Hydraulics Benchmark Problem A with free valve. Solid line:

l3=l1 ¼ 67=13: Broken line: l3=l1 ¼ 5:

Fig. 6. Reservoir–pipe–valve system in Delft Hydraulics Benchmark Problem A.
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Fig. 10. Poisson coupling. Pressure at midpoint for Delft Hydraulics Benchmark Problem A with fixed valve. Solid line: l3=l1=exact

and l3=l1 ¼ 67=13: Broken line: no FSI.

Fig. 9. Poisson coupling. Pressure at valve for Delft Hydraulics Benchmark Problem A with fixed valve. Solid line: l3=l1=exact and

l3=l1 ¼ 67=13: Broken line: no FSI.

Fig. 11. Poisson and junction coupling. Pressure at valve for Delft Hydraulics Benchmark Problem A with free valve. Lower figure:

solid line: l3=l1=exact and l3=l1 ¼ 67=13; broken line: no FSI. The top figure shows a magnified detail not visible in the lower figure:
solid line: l3=l1=exact; broken line: l3=l1 ¼ 67=13:
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Fig. 12. Poisson and junction coupling. Pressure at midpoint for Delft Hydraulics Benchmark Problem A with free valve. Lower

figure: solid line: l3=l1=exact and l3=l1 ¼ 67=13; broken line: no FSI. The top figure shows a magnified detail not visible in the lower
figure: solid line: l3=l1=exact; broken line: l3=l1 ¼ 67=13:

Fig. 13. Non-instantaneous valve closure. Poisson and junction coupling. Pressure at valve for Delft Hydraulics Benchmark Problem

A with free valve. Solid line: l3=l1=exact and l3=l1 ¼ 67=13: Broken line: no FSI.

Fig. 14. Non-instantaneous valve closure. Poisson and junction coupling. Pressure at midpoint for Delft Hydraulics Benchmark

Problem A with free valve. Solid line: l3=l1=exact and l3=l1 ¼ 67=13: Broken line: no FSI.
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causing a transient. To show that the new method works for time-dependent boundary conditions, the more realistic

case of non-instantaneous valve closure has been calculated. The nonlinear model of Section 2.6 takes q2 ¼ Vr in

Eq. (30), where Vr is time-dependent and defined by Eq. (A.4). The valve closure time Tc ¼ 0:03 s in Figs. 13 and 14.

Fig. 13 shows that the pressure effectively starts to rise after time 0:7Tc: Comparing the FSI results (solid lines) in

Figs. 13 and 14 with those in Figs. 11 and 12, one sees that all short-duration pressure spikes have disappeared.

Compared with the classical waterhammer (no FSI) solution (broken lines), the extreme pressures are larger and the

fundamental frequency is lower. The FSI graphs in Figs. 13 and 14 consist of 825 points.

5. Conclusion

The FSI four-equation model, Eqs. (1)–(4), has been solved exactly for time-dependent boundary and constant

(steady state) initial conditions. The strength of the method is the simplicity of the algorithm (recursion) and the fast

and accurate (exact) calculation of transient events (to8L=cf ). Its weakness is the exponential calculation time needed

for longer events.

The solutions are exact for the selected points of calculation in the distance–time plane, but they do not give

information on what exists in between these points (no guaranteed constant values as in the wave tracking method of

Wilkinson and Curtis (1980)). The efficiency of the algorithm can be much improved because many repeat calculations

occur, but this will be at the expense of simplicity and clarity. The method is ideal for parallelization and adaptivity.

Appendix A. Solution of nonlinear Eq. (33)

The nonlinear boundary condition (33) is solved simultaneously with three linear equations for the four variables

Vr ¼ V � ’uz; P, ’uz and sz: The system of equations can be written as

a1Vr þ a2P þ a3 ’uz þ a4sz ¼ a5; ðA:1aÞ

b1Vr þ b2P þ b3 ’uz þ b4sz ¼ b5; ðA:1bÞ

c1Vr þ c2P þ c3 ’uz þ c4sz ¼ c5; ðA:1cÞ

d1V
2
r þ d2P ¼ d5; ðA:1dÞ

where the coefficients ai; bi; ci and di (i ¼ 1; 2, 3, 4, 5) can be time dependent and d1a0:
Elimination of ’uz and sz from the three linear Eqs. (A.1a-c) gives

e1Vr þ e2P ¼ e5: ðA:2Þ

For c4a0 the coefficients e1; e2 and e5 are given below, for c4 ¼ 0 a cyclic interchange (ci-bi-ai-ci) has to be carried

out.

e1 ¼

singular matrix if ða3c4 � a4c3Þ ¼ 0 and ðb3c4 � b4c3Þ ¼ 0

ða1c4 � a4c1Þ if ða3c4 � a4c3Þ ¼ 0

ðb1c4 � b4c1Þ if ðb3c4 � b4c3Þ ¼ 0

ða1c4 � a4c1Þ
ða3c4 � a4c3Þ

�
ðb1c4 � b4c1Þ
ðb3c4 � b4c3Þ

otherwise;

8>>>>><
>>>>>:

ðA:3aÞ

e2 ¼

singular matrix if ða3c4 � a4c3Þ ¼ 0 and ðb3c4 � b4c3Þ ¼ 0

ða2c4 � a4c2Þ if ða3c4 � a4c3Þ ¼ 0

ðb2c4 � b4c2Þ if ðb3c4 � b4c3Þ ¼ 0

ða2c4 � a4c2Þ
ða3c4 � a4c3Þ

�
ðb2c4 � b4c2Þ
ðb3c4 � b4c3Þ

otherwise;

8>>>>><
>>>>>:

ðA:3bÞ
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e5 ¼

singular matrix if ða3c4 � a4c3Þ ¼ 0 and ðb3c4 � b4c3Þ ¼ 0

ða5c4 � a4c5Þ if ða3c4 � a4c3Þ ¼ 0

ðb5c4 � b4c5Þ if ðb3c4 � b4c3Þ ¼ 0

ða5c4 � a4c5Þ
ða3c4 � a4c3Þ

�
ðb5c4 � b4c5Þ
ðb3c4 � b4c3Þ

otherwise:

8>>>>><
>>>>>:

ðA:3cÞ

Elimination of P from the two Eqs. (A.1d) and (A.2) gives (e2a0)

Vr ¼
d2e17½ðd2e1Þ

2 � 4d1e2ðd2e5 � d5e2Þ�1=2

2d1e2
: ðA:4Þ

Substitution of Vr in Eqs. (A.1a–c) gives three linear equations for P; ’uz and sz; which can easily be solved.

In the present paper the coefficients in Eq. (A.1) are:

a1 ¼ S�1
11 ; a2 ¼ S�1

12 ; a3 ¼ S�1
13 þ a1; a4 ¼ S�1

14 ; a5 ¼ Z1ðA1Þ;

b1 ¼ S�1
31 ; b2 ¼ S�1

32 ; b3 ¼ S�1
33 þ b1; b4 ¼ S�1

34 ; b5 ¼ Z3ðA3Þ;

c1 ¼ D41; c2 ¼ D42; c3 ¼ D43 þ c1; c4 ¼ D44; c5 ¼ q4;

d1 ¼ 71; d2 ¼ �t2ðtÞðV0 � ’uz0ÞjV0 � ’uz0j=P0; d5 ¼ 0:

The definition of a3; b3 and c3 is such that Vr instead of V is the first independent variable in Eq. (20). The matrices S

and D and vector q are given in Eqs. (27) and (30).

According to relation (33), which describes positive flow (in z-direction) for positive pressure P; the following

condition must hold

d1VrX0: ðA:5Þ

In the example presented in the last paragraph of Section 4.2, d1 ¼ þ1 and the+sign (+root) in Eq. (A.4) gave valid

solutions satisfying condition (A.5).

Appendix B. Recursion

B.1. Input

The coefficient matrices A; B; C; DðtÞ; the excitation vector qðtÞ; and the initial condition /0ðzÞ describe the complete
system in general terms. It is stressed once again that C ¼ O; so that the algorithm does not apply to Timoshenko

beams and systems with distributed friction, viscous damping, etc.

B.2. Output

The output is the state vector / ¼ Sg as a function of distance and time.

B.3. Boundary points

The subroutine BOUNDARY calculates g in the boundary points (see Fig. 3) (finally) from constant initial values. In

pseudo-code it reads:

BOUNDARY (input: z; t; output: g)
if (tp0) then

g:¼g0;
else

if (z ¼ 0) then

CALL BOUNDARY (L, t + L / l4 ; g)
Z4 :¼ Z4
CALL BOUNDARY (L, t + L / l2 ; g)
Z2 :¼ Z2
Z1 :¼ a12ðtÞZ2þ a14ðtÞZ4þ b11ðtÞq1ðtÞ þ b13ðtÞq3ðtÞ
Z2 :¼ Z2
Z3 :¼ a32ðtÞZ2þ a34ðtÞZ4þ b31ðtÞq1ðtÞ þ b33ðtÞq3ðtÞ
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Z4 :¼ Z4
if (z ¼ L) then

CALL BOUNDARY (0, t � L=l3; g)
Z3 :¼ Z3
CALL BOUNDARY (0, t � L=l1; g)
Z1 :¼ Z1
Z1 :¼ Z1
Z2 :¼ a21ðtÞZ1þ a23ðtÞZ3þ b22ðtÞq2ðtÞ þ b24ðtÞq4ðtÞ
Z3 :¼ Z3
Z4 :¼ a41ðtÞZ1þ a43ðtÞZ3þ b42ðtÞq2ðtÞ þ b44ðtÞq4ðtÞ

if (za0 AND zaL) then

‘‘z is not at a boundary’’

end.

Note that l2 and l4 are negative numbers. The coefficients a and b are given in Table 1. They define the unknowns Z1;
Z3 and Z2; Z4 at the left and right boundaries, respectively, as the exact solution of the 2 by 2 linear system of Eqs. (19).

B.4. Interior points

The subroutine INTERIOR calculates g in the interior points (see Fig. 2) from the boundary values. In pseudo-code

it reads:

INTERIOR (input: z; t; output: g)
if (tp0) then

g :¼ g0;
else

if (0ozoL) then
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Table 1

Definition of the coefficients a and b in subroutine BOUNDARY. DSðtÞ is the matrix product of DðtÞ and S

z ¼ 0 z ¼ L

det13ðtÞ : DSðtÞ1;1 �DSðtÞ3;3 �DSðtÞ3;1 �DSðtÞ1;3 det24ðtÞ : DSðtÞ2;2 �DSðtÞ4;4 �DSðtÞ4;2 �DSðtÞ2;4

a12ðtÞ :¼
�ðDSðtÞ1;2 �DSðtÞ3;3 �DSðtÞ1;3 �DSðtÞ3;2Þ

det13ðtÞ
a21ðtÞ :¼

�ðDSðtÞ2;1 �DSðtÞ4;4 �DSðtÞ2;4 �DSðtÞ4;1Þ
det24ðtÞ

a14ðtÞ :¼
�ðDSðtÞ1;4 �DSðtÞ3;3 �DSðtÞ1;3 �DSðtÞ3;4Þ

det13ðtÞ
a23ðtÞ :¼

�ðDSðtÞ2;3 �DSðtÞ4;4 �DSðtÞ2;4 �DSðtÞ4;3Þ
det24ðtÞ

a32ðtÞ :¼
�ðDSðtÞ3;2 �DSðtÞ1;1 �DSðtÞ3;1 �DSðtÞ1;2Þ

det13ðtÞ
a41ðtÞ :¼

�ðDSðtÞ4;1 �DSðtÞ2;2 �DSðtÞ4;2 �DSðtÞ2;1Þ
det24ðtÞ

a34ðtÞ :¼
�ðDSðtÞ3;4 �DSðtÞ1;1 �DSðtÞ3;1 �DSðtÞ1;4Þ

det13ðtÞ
a43ðtÞ :¼

�ðDSðtÞ4;3 �DSðtÞ2;2 �DSðtÞ4;2 �DSðtÞ2;3Þ
det24ðtÞ

b11ðtÞ :¼
DSðtÞ3;3
det13ðtÞ

b13ðtÞ :¼
�DSðtÞ1;3
det13ðtÞ

b22ðtÞ :¼
DSðtÞ4;4
det24ðtÞ

b24ðtÞ :¼
�DSðtÞ1;3
det24ðtÞ

b31ðtÞ :¼
�DSðtÞ3;1
det13ðtÞ

b33ðtÞ :¼
DSðtÞ1;1
det13ðtÞ

b42ðtÞ :¼
�DSðtÞ4;2
det24ðtÞ

b44ðtÞ :¼
DSðtÞ2;2
det24ðtÞ
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CALL BOUNDARY (0, t � z=l1; g)
Z1 :¼ Z1
CALL BOUNDARY (L; t � ðz � LÞ=l2; g)
Z2 :¼ Z2
CALL BOUNDARY (0, t � z=l3; g)
Z3 :¼ Z3
CALL BOUNDARY (L; t � ðz � LÞ=l4; g)
Z4 :¼ Z4
Z1 :¼ Z1
Z2 :¼ Z2
Z3 :¼ Z3
Z4 :¼ Z4

else

‘‘z is not an interior point’’

end.

B.5. Implementation

The algorithm described above has been implemented in Mathcad (2001); the interested reader may find the Mathcad

worksheets in (Tijsseling, 2002). For the case of nonlinear non-instantaneous valve closure, as described in Section 2.6,

in subroutine BOUNDARY: q2ðtÞ ¼ Vr; Eq. (A.4), for z ¼ L:
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